
Knowledge Acquisition: The current position.

Michael Wilson
Science and Engineering Research Council

Rutherford Appleton Laboratory

Introduction

Ten years ago it was stated that "...one of the greatest bottlenecks ... has been eliciting

and programming new pieces of information... the theory does not exist in any sort of

comprehensive codified form" (Buchanan et al, 1969). By 1983, the field had moved on

so that one book could describe itself as marking "... the adolescence of a major new area

of science and the birth of a new industry: knowledge engineering" (Hayes-Roth et al,

1983). At this time, "Forearmed with dire tales of the difficulties in store for them,

knowledge engineers could be forgiven for embarking on the task of soliciting

knowledge with all the optimism of a security interrogator extracting a confession from a

diehard terrorist" (Cullen and Bryman, 1988). In this context several researchers

attempted to identify a single "magical technique" which could be used to perform

knowledge acquisition in all situations. Although some even claimed to have identified it

they are generally assumed to be misguided.

More recently considerable interdisciplinary research between social and computer scien-

tists has resulted in a range of methods which can be used for knowledge acquisition in

different circumstances. The previous papers in this seminar, several recent books

(Diaper, 1989; Greenwell, 1988; Kidd, 1987; Hart, 1989) and a recent substantial review

paper (Neale, 1988) describe in depth the methods available for knowledge acquisition.

This paper is an attempt to supplement those sources by describing some of the current

problem areas in knowledge acquisition and current research which addresses them. The

general trend in knowledge acquisition research is to combine knowledge acquisition

techniques with those from other areas such as software engineering and human com-

puter interaction. From this position, the four research topics chosen for this review are :

Multiple Knowledge Sources; Validating Acquired Knowledge; Software Development

Methodologies and Process Models; Maintenance and Knowledge Base Extension.



- 2 -

Multiple Knowledge Sources

Standard approaches to knowledge acquisition describe many techniques which can be

used with an expert to elicit knowledge. The use of a single individual as the expert in the

design of an expert system is usually efficient when the system is required to problem

solve in restricted domains or when a single, easily identified expert embodies most of

the expertise the system is required to emulate. However, a single expert usually has

expertise in only a small subset of tasks in a specific part of system and may not have

adequate expertise in the other areas of the system’s functionality. Indeed for many large

systems, not only need multiple experts be used but also large sources of documentary

data and possibly large stores of on-line information. Recent medical diagnosis systems

have used the expertise from several specialists in different domains, text books, on line

dictionaries and video libraries and large epidemiological data banks as sources of both

the knowledge for the initial system and as a means of identifying changes in diagnostic

data causing changes in the encoded knowledge. Such systems are remote in their design

from the cognitive models underlying early expert systems and require elaborations on

the simple elicitation techniques listed in most knowledge acquisition texts.

The simplest case where multiple knowledge sources are required is where there are

several experts in non-overlapping domains of knowledge. Here knowledge elicitation

can take place with the experts separately to acquire the static conceptual domain

knowledge. If both that and the reasoning processes do not interact then knowledge elici-

tation can continue with the experts separately; since the final system will be modular in

structure with clear data/knowledge interfaces. However, this is a rare case. Where the

knowledge overlaps small-group knowledge acquisition should follow the initial indivi-

dual sessions to determine that terms are being used in the same way and to clarify over-

laps or contradictions. When conducting knowledge acquisition with groups, the usual

problems of knowledge acquisition still exist with the addition of the social problems of

managing a group of people (e.g. subordinates will not contradict superiors; some people

won’t make suggestions for fear of looking foolish to others; dictatorial aggressive indi-

viduals dominate the group etc ...). If the possibility exists to select the experts for group

work, obviously the democratic individuals who will be motivated by the group’s goals

are better choices than self interested autocrats or non-directed individuals who may dis-

tract the group away from its objectives. However, such choices of experts are rarely

available.

As when working with individuals, the social skills of the knowledge engineer are crucial

to the enterprise, and training in group management skills is very useful. The major

benefit of working with a group is that they will usually produce more options than an



- 3 -

individual. This is most pronounced in finding counter examples to an inference or in

locating special cases. This characteristic can be amplified by conducting brainstorming

sessions to generate ideas and then conducting consensus decision making to select

which are the best or most appropriate. Otherwise, the techniques of task analysis, proto-

col analysis, structured interviews and simulation activities used with individual experts

have proved useful (McGraw and Seale, 1988).

Apart from the use of multiple experts, the other sources of information required for most

large knowledge bases are documentation or on-line data. The methods most often used

for analysing and representing these are automated techniques of induction or machine

learning which have been described in the papers by Forsyth and Addis.

Validating Acquired Knowledge

Conventional software is developed through methods which require documents specify-

ing the user requirements against which designs and programs can be validated to show

that they perform the function required. Such conventional validation requires precise

test procedures. As long as reasonably precise requirements and design specifications can

be obtained for KBS, test procedure preparation should be of no greater difficulty than

for conventional software. Although the KBS development methodologies discussed in

the next section, and recent work on quality assurance for KBS (Born, 1988) attempt to

define the required documents, KBS software requirements are often nonexistent, impre-

cise, or rapidly changing. In this situation test procedure design becomes more difficult.

There is no widely accepted, reliable method for evaluating the results of tests of expert

systems. Rushby (1988) proposes that evaluatable requirements can be divided into the

"service" and "competency" requirements. Service requirements are such things as the

input and output formats expected, processing rates, the explanation facilities required

and other factors which should be amenable to statements no less rigorous and formal

than those for conventional software. Competency requirements concern the knowledge

acquired for the system and can be divided into minimum and desired competency

requirements. The minimum competency requirements should define how badly the sys-

tem is allowed to perform. These may be similar to system safety specifications and

should be reasonably easy to specify. Desired competency will probably be defined rela-

tive to human expertise and describes how well a system should perform, which will be

more difficult to specify. For example, the desired competency of a system may be to

produce an optimal value which may be hard to find, and its optimality just as hard to

check; it may be easier to define a minimum requirement that the system produce a valid

solution. The usual method for defining desired competency is through a gold standard.



- 4 -

This will either be an objectively correct answer to a problem, or an answer given by a

human expert (or group of experts) when presented with the same information as the sys-

tem being evaluated. However, the approach of having human experts in the domain of

the expert system evaluate the results has numerous drawbacks: there may be no expert

available, or the expert may not be independent when independent evaluation is required;

human experts may be prejudiced or parochial; the problem for which the expert system

was written may be one that no human can solve reliably or efficiently. Evaluation using

human experts is expensive, so few test cases are generally used with the consequential

failure in the completeness of the evaluation (the medical diagnosis system MYCIN was

subjected to a mere 10 test cases, and the configuration system R1 only 50 before being

put into service).

As with conventional software, KBS can be subjected to two forms of testing to locate

potential problems in the knowledge acquisition: static and dynamic testing. The most

common forms of static testing involve experts checking for consistency and complete-

ness in the conceptual knowledge of a domain (usually on a paper model of the

knowledge base), and identifying critical values and cases for dynamic testing. A

minimum requirement for dynamic testing is that every rule should be made to fire once,

and a more stringent test would be that all outcomes of every rule should be exercised.

Several research projects are currently investigating the notion of measures for testing

combinations of rules and outcomes in the spirit of path testing for conventional

software. However, the only common methods of dynamic testing for KBS are to test

critical values of rule combinations which are known to change the dynamic operation of

the system catastrophically. Along with this it is often useful to perform a sensitivity

analysis to determine both, if the same input can produce different outputs and whether

very similar inputs can produce wildly different outputs - it is this potential for instability

that underlies many of the concerns expressed about AI software. It is not the number of

test cases used which is of importance (although this does give face validity to any

evaluation), but the coverage of the test cases. These should cover a random sample of

the possible data combinations (not just the easy or common cases), and additional

obscure or complex test cases which experts find difficult.

Validation and testing should not be thought of as extraneous to knowledge acquisition,

since it is these methods which will motivate the knowledge acquisition in its later stages

to refine the knowledge base.



- 5 -

Software Development Methodologies and Process Models

So far knowledge acquisition or knowledge elicitation have not been defined in this

paper. Kidd (1987) suggested a simple definition which is similar to that used by Diaper

in the opening paper of this seminar: "Knowledge acquisition involves elicitation of data

from the expert (usually by some verbal technique); interpretation of the data to infer the

underlying knowledge or reasoning process, and, guided by this interpretation, creation

of a model of the expert’s domain knowledge and performance". Although this is ade-

quate as a definition, it is not a method for performing knowledge acquisition or KBS

development. Equally, although the AI literature abounds with methods and techniques

for eliciting knowledge and modelling reasoning processes, their description is not uni-

form and unambiguous. Consequently, a major research topic at present is that of

integrating these techniques and decisions made about knowledge acquisition with the

rest of the software development method.

Figure 1: A Knowledge Based System development life cycle.



- 6 -

There are many development methods for non-KBS software (that do not include

knowledge acquisition) based on development or product life cycles. As a result of inter-

disciplinary research between social and computer scientists several of the major cor-

porations that are now using KBS have established their own methods of the style used

for non-KBS software which are aimed at KBS development. Figure 1 shows a schematic

of one method proposed by Tectronics.

This is a high level view of a software development process which allows the techniques

and decision points to be fitted into it. At a finer grain of description it allows the

interaction of decisions made at different stages to be seen; for example, the interaction

of decisions about the choice of suitable KBS applications with those made during

knowledge elicitation and representation.

The more detailed description of the problem definition stage includes the option for a

complete cycle of the method on a part of the identified problem as a feasibility study.

This includes the development of a prototype which is often required as much to show

the client what a KBS could do and persuade them to fund further development as it is

for knowledge validation, human interface evaluation or evolutionary system design.

The definition of the problem and the assessment of KBS as a suitable solution to a prob-

lem is itself still a major research issue. Prerau (1985), Waterman (1986) and Slagle and

Wick (1988) all suggest criteria for this assessment, although they are not complete or

systematically integrated into a broader development method. Slagle and Wick suggest

the most complex criteria as lists of essential and desirable features of a potential appli-

cation (shown in table 1). A score between 0 and 10 should be assigned as a general

weight of importance to each feature in the lists, and then as a value for each candidate

application. The sum of the products of the weight and value shows which are the most

likely applications (their paper should be consulted for the complete method before it is

attempted). Greenwell (1988) presents similar lists of questions for use in the first

knowledge acquisition sessions which do not rely on complex weighting schemes to

evaluate the suitability of applications. One drawback with these lists of criteria is that

they are implicitly linked to the knowledge elicitation, analysis and representation tech-

niques used by the authors. For example, one of Slagle and Wick’s essential features for

an application is that the "expert does not use physical skills". It is true that expert’s are

unlikely to be able to verbalise the details of how they use physical skills and the

development of a KBS using interview or other verbal knowledge elicitation procedures

would be impossible in these cases. However, task analysis of records of performance, or

induction of rules from data acquired through transducers on the moved devices (e.g.

readings from meters read or values from knobs moved in a control plant) will give



- 7 -

information which can be included in a KBS.

�����������������������������������������������������������������������������������������������������������������������������������������
Essential Features Desirable Features�����������������������������������������������������������������������������������������������������������������������������������������

Recipients agree on high payoff Management committed to follow on
Recipients have realistic expectations Insertion into work place smooth
Project has management commitment System interacts with user
Task is not natural language intensive System can explain reasoning
Task is knowledge intensive System can intelligently question user
Test cases are available Task identified as problem area
Incremental growth is possible Solutions are expandable
Task requires no common sense Task does not require real-time response
Task does not require optimal solution Similar expert systems built before
Task will be performed in the future Task preformed in many locations
Task not essential to deadline Task performed in hostile environment
Task easy, but not too easy Task involves subjective factors
An expert exists Expert unavailable in future
Expert is a genuine expert Expert intellectually attached to project
Expert is committed to entire project Expert does not feel threatened
Expert is co-operative Expertise loosely organised
Expert is articulate
Expert has successful history
Expert uses symbolic reasoning
Hard to transfer expertise
Expert does not use physical skills
Experts agree on good solutions
Expert does not need creativity�����������������������������������������������������������������������������������������������������������������������������������������

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1: Essential and Desirable features for a KBS application (after Slagle and
Wick, 1988).

For several years there has been an unfruitful debate about which single development

method should be followed: a linear waterfall model, an evolutionary approach, should

prototyping be included or only static paper representations, etc. Many of the corporate

KBS development methods such as that in Figure 1 are based on a linear waterfall model

which has been slightly modified to accommodate the prototyping used in KBS develop-

ment. Recent research in software engineering has moved away from this linear

approach of the life cycle in order to take account of dependencies between decisions

taken in different parts of the development (e.g. the selection of suitable applications and

the selection of knowledge acquisition techniques), and to allow methods to be selected

during development which are appropriate to address problems that arise. The most

advanced approach is the spiral model of software development and enhancement pro-

posed by Boehm(1988). This allows the method to be applied between reviews which

most addresses the aspect of the development where the greatest risk of the project fail-

ing will come from (e.g. changes in the user requirements, the human interface, data

interfaces between modules, the completeness and consistency of static knowledge, or

the dynamic interaction of knowledge and inference processes). The major research



- 8 -

project on KBS methodology is the CEC funded project KADS (Knowledge Acquisition

and Design System, see Hayward, 1987) that started in 1985 and will continue until

1990. Early in the KADS project they proposed a waterfall style life cycle model which

did not include prototyping, although as research has progressed they have shown the

need to represent the links between decisions at different stages of development and are

now investigating a model of the spiral class.

The KADS development method addresses in detail the interaction of knowledge

acquisition with the organisational structure and strategy of the user organisation; the

integration of user requirements themselves with the knowledge acquisition; the human

interface design and other human factors issues of the system including training; as well

as providing tools to support the use of the overall method. There is not sufficient space

here to describe all these developments, although it should be noted that knowledge

acquisition will interact with many other issues, and they should all be considered. The

knowledge acquisition stage in the KADS model however includes sufficient useful and

portable features to require a brief summary.

KADS proposes that knowledge modelling should pass through five stages:

1) Data - a low level description which can be mapped onto linguistic information.

2) Conceptual Model - describes the competence in expert problem solving

3) Design Model - high level system design at the same abstraction as the Concep-

tual model although including implementation formalisms.

4) Detailed Design Model - a transformation from the design model

5) Implementation - the implemented system.

The focus of knowledge acquisition within this methodology will be the data and the

conceptual model resulting from its analysis and representation. The Conceptual Model

is further divided into a four layer knowledge model where each successive layer inter-

prets the description of the lower layer:

1) static domain knowledge - domain concepts and their attributes, domain facts,

structures representing complex relations etc .. The static domain knowledge is

assumed to be largely class neutral.

2) knowledge sources - elementary steps in reasoning that specify the type of infor-

mation used in making the inference and the type of information that it produces.

3) task - the structure of elementary inferences required to produce a goal.

4) strategic knowledge - which goals are relevant to solve a particular problem.



- 9 -

To facilitate the use of this approach the KADS project has proposed a formal notation

for specifying conceptual models which can be used to analyse data. Perhaps the major

contribution of the project has been to specify a set of generic interpretation models for

different problems which act as skeletons for conceptual models. In table 2, one of the

desirable properties of a suitable KBS application was that similar expert systems had

been built before. The experience of building a similar system provides the knowledge

engineer with a framework of what classes of knowledge to look for, what inference

processes to expect and what elicitation and representation techniques are suitable. The

interpretation models proposed in the KADS project serve the role of this prior experi-

ence in that once the class of problem has been identified, then they identify the classes

of information to look for in the conceptual model. Although knowledge engineers may

not use the notation proposed in KADS, the use of interpretation models is a valuable and

useful technique in motivating the structure of the knowledge acquisition process. It is

always easier to look for something when you know what it is that you are looking for,

then when you do not. Knowledge engineers may not even wish to use the interpretation

models proposed within KADS since they adopt the four level model of knowledge.

However, the construction of interpretation models to fit other knowledge abstractions

based on personal experience would serve the same purpose.

Having stated the desirability and usefulness of interpretation models it is necessary to

state some of the failings and problems with them. It is tempting when using them to

stick too closely to them, or to the initial selection of an inappropriate model. This will

cause the knowledge engineer to look for knowledge which is neither relevant or present,

or to overlook some of the knowledge which is presented. A second failing is limited to

the current KADS models, in that they assume that all knowledge will be acquired ver-

bally. Consequently, they do not include guides as to which knowledge elicitation tech-

niques should be used of the sort which Welbank describes in her paper. These would be

a valuable extension to the interpretation models and may be included later in the project.

There are three main reasons for this omission. Firstly, although KADS proposes a set of

knowledge types for each of the layers of the conceptual model, their is uncertainty as to

the correctness and completeness of these. Secondly, elicitation method selection tables

are normally built up from studies conducted by various authors who use disparate and

often incompatible knowledge types. This can result in confusion when trying to select

techniques. If the knowledge types are mapped onto a single theoretical base such as that

used in KADS, then this problem could be overcome. Thirdly, the theoretical basis in

cognitive psychology and epistemology of the knowledge types and approach of KADS

is grounded on verbal concepts, and there is little theoretical support for including



- 10 -

concepts which have no verbal status.

The importance of development methods for knowledge acquisition is that they allow

different techniques, guidelines and decision points to be clearly stated in a coherent

whole which can guide the knowledge engineer, without him having to resort to a jumble

of incompatible and inconsistently expressed case studies or academic papers. This

allows the interaction of decisions at very distant parts of the development method to be

traced, and the consequences of any decision made clear to the knowledge engineer.

Maintenance and Knowledge Base Extension

Although maintenance and enhancement is clearly a stage in the software process model,

it has been classed as a separate research topic since it is often overlooked in discussions

of knowledge acquisition. The major difficulty with advice on maintenance is that there

is very little data or published experience on maintaining KBS. Because of this, the main

points to be made about maintaining KBS are to note potential problems. The most

important observation is that knowledge acquisition is not completed when a system is

delivered to a customer, but continues during maintenance and extension of the system.

For example, XCON is a rule based system used by DEC to configure computer systems

since January 1980. Over 7 years it grew from 700 to 6,200 rules of which 50% changed

every year (these draw on a database of approximately 20,000 parts so the changes are

not simply those required to add new parts to be configured).

Two main properties directly influence the maintainability of a KBS. The homogeneity

of the maintained representation: that is the use of a small number of discernible

representations over and over again to accomplish the various desired goals; and the

predictability of the representation: that is, readers know where to look for the answers to

questions; they are not surprised by what they come across; and they can trust that noth-

ing is hidden. The term representation is used here, since the object which is being main-

tained as new knowledge is acquired may not always be code, but an intermediate

representation. The use of an intermediate representation will add an extra layer to the

maintenance, but it will also provide a higher level language in which these properties

are more likely to persist.

One of the problems in maintenance is that it is rarely performed by the original

knowledge engineer; often not by a member of the team or organisation which developed

the original system; and in some cases (e.g. for changes to a financial system immedi-

ately after a budget announcement) by the client or user under time pressure. It is equally

common that expertise will have to be acquired from experts who were not involved in

the original knowledge acquisition and may have different ways of describing the domain



- 11 -

than those who were. These changes in personnel require that the original knowledge

representation and the knowledge acquisition process used are carefully documented so

that a new knowledge engineer can understand them. A typical strategy for extending a

representation to handle new examples of prior static knowledge is to copy the represen-

tation that worked for a similar body of static knowledge and then edit it to handle the

new knowledge. Unfortunately, in the editing process one is not always sure what the

rationale for all the functions was. The result is that one often inadvertently changes a

function; alternatively, one doesn’t change the functions, but keeps them in the new

representation - not feeling confident why they were there. The rationale behind the

representation of the knowledge should be clearly documented to avoid these problems.

The problems of maintaining KBS and knowledge acquisition during maintenance are

greater than those in non-KBS programs - there has been an unfortunate tendency to

regard KBS as different and forget the lessons learned elsewhere.

There is no clear solution to the problems of maintenance. It is necessary to consider it

when performing the initial knowledge acquisition and to document all the decisions

made and techniques used carefully to reduce problems when it finally comes about. One

useful test of representations and documentation is to see if it is necessary to know who

wrote them before they can be understood (or to see if the person who wrote them can be

identified from them) - if so, they are inadequate.

Conclusion

This paper has attempted to cover the major areas of current knowledge acquisition

research which the other papers in this seminar or the available books on the field do not

address. I apologise if some information is duplicated between this paper and those of the

other speakers, or if I assumed another speaker would cover issues that have been missed

since they did not. The paper does not address the core issues of knowledge elicitation or

representation techniques which occupy most pages in descriptions of knowledge

acquisition, and consequently may read as though it is peripheral to the subject. How-

ever, the issues of multiple sources of knowledge, validation of knowledge, development

methodologies, the selection of appropriate applications and maintenance which have

been addressed all bear on decisions made during knowledge acquisition and if not per-

formed as part of the knowledge acquisition process, must be considered during it.

Unfortunately, most of the issues mentioned have not been resolved since they are still

problematic, and the subject of research. The pointers that are available from that

research provide as much guidance as is available.



- 12 -

References

Boehm, B.W. (1988), "A Spiral Model of Software Development and Enhancement",

Computer, May 1988, pp 61-72.

Born, G. (1988), Guidelines for the Quality Assurance of Expert Systems. London, U.K.:

Computing Services Association.

Buchanan, B.G., Sutherland, G.L. and Feigenbaum, E.A. (1969), "Rediscovering some

problems in Artificial Intelligence in the Context of Organic Chemistry". In B Meltzr and

D. Michie (eds) Machine Intelligence, 5, pp 253-280, Edinburgh: Edinburgh University

Press.

Cullen, J. and Bryman, A. (1988), "The Knowledge Acquisition Bottleneck: Time for

Reassessment?" Expert Systems, 5 (3), 216-225.

Diaper, D. (1989), Knowledge Elicitation: principles, techniques and applications. Chi-

chester, U.K.: Ellis Horwood.

Greenwell, (1988), Knowledge Engineering for Expert Systems. Chichester, U.K.: Ellis

Horwood.

Hart, A. (1989) Knowledge Acquisition for Expert Systems (Second Edition) London,

UK: Kogan Page

Hayward, S., (1987), "How to build knowledge based systems: techniques, tools, and

case studies". In ESPRIT ’87: Proceedings of the Esprit Conference, pp 665-687.

Brussels: Commission of the European Economic Community.

Hayes-Roth, F., Waterman, D.A., and Lenet, D.B., (1983), Building Expert Systems,

Reading, Mass.: Addison-Wesley.

Kidd, A., (1987), Knowledge Acquisition for Expert Systems: A Practical Handbook.

New York, USA: Plenum Press.

McGraw, K.L. and Seale, M.R., (1988), "Knowledge Elicitation with Multiple Experts:

Considerations and Techniques" Artificial Intelligence Review, 2 (1), pp 31-44.

Neale, I.M., (1988), "First Generation expert systems: a review of knowledge acquisition

methodologies" The Knowledge Engineering Review, 3 (2), pp 105-145.

Prerau, D.S., (1985), "Selecting an Appropriate Domain for an Expert System" AI Maga-

zine, 6 (2), Summer, pp 26-30.

Rushby, J. (1988) Quality Measures and Assurance for AI software, SRI International

Report, Sept. 1988.



- 13 -

Slagle, J.R. and Wick, M.R. (1988), "A method for evaluating candidate expert system

applications" AI Magazine, 9 (4), Winter, pp 44-53.


